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Electron distribution function in short-pulse photoionization

B. Hafizi,1 P. Sprangle,2 J. R. Pen˜ano,2 and D. F. Gordon1
1Icarus Research, Inc., P.O. Box 30780, Bethesda, Maryland 20824-0780
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Two well-known limiting regimes of photoionization, when a laser beam interacts with a gas, correspond to
the tunneling and the multiphoton processes. The latter dominates in the low-intensity regime, while the former
is appropriate at higher intensities. Electrons are born with negligible velocity in tunneling ionization, while in
l-photon ionization they are born with a fixed energy determined byl, the photon energy and the ionization
potential of the molecule. The transport equation for the distribution function of electrons can be integrated
along the characteristics defined by the classical equations of motion in the laser field. Expressions for the
distribution function have been obtained in the two regimes using the appropriate analytical form for the
ionization rate. Results from two-dimensional particle-in-cell simulations and illustrative plots of the distribu-
tion function are presented and discussed.
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I. INTRODUCTION

Ionization of a gas that is subjected to electromagn
radiation is often analyzed in two well-known limiting cas
@1,2#. In the first, free electrons in the gas gain energy fr
the electric field and ionize the molecules on impact, lead
to the release of secondary electrons and avalanche b
down. The analysis in this paper is limited to ionization
relatively short, intense laser pulses where avalanche br
down is generally negligible. In the second route, the field
directly responsible for detaching electrons from the ato
or molecules@3–5#. This route, referred to as photoioniz
tion, is further subdivided into two regimes, namely, tunn
ing ionization and multiphoton ionization~MPI!. In tunnel-
ing ionization the Coulomb barrier is deformed by t
electric field of the radiation, allowing a bound-electro
wave function to tunnel through and become a propaga
wave function. In MPI, on the other hand, an electron jum
from a bound state into the continuum by absorbing a su
cient number of photons. There have been a number of
periments aimed at characterizing the two regimes@6–8#.
The differing physical circumstances of these two regim
are expected to lead to different distribution of electrons. T
purpose of this paper is to derive analytical forms for t
electron distribution function in the two regimes. There a
many circumstances where the detailed distribution of p
toelectrons is of interest, an example being attosecond s
troscopy@9,10#

The plan of the paper is as follows. In Sec. II the tw
regimes of photoionization are distinguished, the transp
equation is solved, and analytical forms for the electron d
tribution function are obtained. In Sec. III the distributio
functions are numerically evaluated and momentum-sp
plots are shown to illustrate the different characteristics
sociated with the two regimes. Two-dimensional particle-
cell simulation results are also presented to demonstrat
interesting momentum-space pattern that is characteristi
tunneling ionization.
1063-651X/2003/67~5!/056407~7!/$20.00 67 0564
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II. PHOTOIONIZATION

In this section the formalism for evaluating the electr
distribution function in the two regimes of photoionization
set up. To do so, it is first necessary to have a quantita
measure for distinguishing the two regimes. Next, formu
for the ionization rate in the two regimes are given, the tra
port equation for the distribution function is written dow
and formally integrated along the characteristics. Finally
characteristics, i.e., the relativistically correct, classical el
tron orbits in the laser field are obtained.

A. Tunnel vs multiphoton photoelectric effect
and the Keldysh parameter

The ionization energy of a molecule is denoted byUi . In
isolation, a molecule has a set of discrete, bound energy
els. In the presence of an electric fieldE the Coulomb po-
tential is deformed and a potential barrier of finite wid
develops. The widthD of this barrier is proportional toUi
and inversely proportional toE[uEu; i.e., D;Ui /(ueuE),
wheree is the charge on an electron. Denoting the electro
mass by m, the typical atomic electron velocity isv
;(2Ui /m)1/2, and therefore the transit time of an electro
through the barrier ist tunnel;D/v;(2mUi)

1/2/(ueuE). If v
is the frequency of the radiation field, the Keldysh parame
gK[vt tunnel is expressible as@11#

gK5v
~2mUi !

1/2

ueuE
. ~1!

In the quasistatic or high-field limit,gK!1, ionization pro-
ceeds by tunneling of electrons through the barrier. In
opposite limit,gK>1, ionization takes place via multiphoto
detachment of electrons. The two regimes are sketche
Fig. 1.

Equation ~1! may be rewritten to reveal an alternativ
physical meaning ofgK . In a linearly polarized oscillatory
electric field the average electron oscillation~quiver or pon-
©2003 The American Physical Society07-1
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deromotive! energy isUp5 1
4 m(ueuE0 /mv)2. In terms of

Up , gK5(Ui /2Up)1/2, whereE0 is the amplitude of the elec
tric field. In practical units,

gK5
2.31

l@mm# F Ui@eV#

I 0 @TW/cm2#
G 1/2

,

wherel is the wavelength andI 05(cn0/8p)E0
2'(c/8p)E0

2

is the average intensity of the electromagnetic field in a
efied gas with refractive indexn0'1.

B. Ionization rate

Neglecting attachment and recombination the rate eq
tion for electron densityn is given by]n/]t5Wnn , where
W is the ionization rate andnn is the neutral gas density. Th
instantaneous ionization rate in the tunneling regimeWtun
may be obtained by employing thegK!1 limit of the gen-
eral analysis of Keldysh@11–13#,

Wtun54V0S Ui

UH
D 5/2S I H

I ~ t ! D
1/2

expF2
2

3 S Ui

UH
D 3/2S I H

I ~ t ! D
1/2G ,

~2!

FIG. 1. One-dimensional schematic contrasting two regime
photoionization. The Coulomb potential is denoted byUc , the ion-
ization potential of an energy level byUi , and the potential due to
the laser field byU, . In ~a! l or more photons of frequencyv are
sufficient to raise a bound electron into the continuum. The ‘‘stat
sketch shown in~b! is valid provided the tunneling time is sho
compared to the optical period~i.e., t tunnel!1/v).
r-

a-

where I (t)5(c/4p)E2(t) is the intensity of the laser beam
~assumed to be linearly polarized!, V054.131016 s21 is the
fundamental atomic frequency,I H53.631016 W/cm2 and
UH513.6 eV is the ionization energy of hydrogen. The io
ization rate in the tunneling regime is a highly sensitive fun
tion of the electric field through the exponential factor in E
~2!. This is a reflection of the exponentially small probabili
for an electron to tunnel through the Coulomb barrier. Eq
tion ~2! is valid provided~i! \v!Ui ~to avoid single-photon
ionization! and ~ii ! Up@\v/(4gK

3 ) @for validity of the qua-
siclassical~WKB! solution of Schro¨dinger’s equation#. Here,
\ is Planck’s constant divided by 2p. For extremely intense
laser beams, the barrier is completely suppressed and
electronic wave function extends beyond the molecule. T
‘‘over the barrier’’ regime is outside the scope of prese
analysis@14#.

In multiphoton ionization the kinetic energy of an electro
is given by an expression that is reminiscent of Einstein’s
the photoelectric effect, i.e.,

E5 l\v2Ui , ~3!

wherel is an integer. In the limitgK>1, Keldysh’s analysis
leads to an expression for the multiphoton ionization r
WM PI that has an algebraic dependence on the laser ele
field; i.e., WM PI}E2l . In numerical terms, Keldysh’s rate i
found to disagree significantly with experimental observ
tions. While more sophisticated models exist~e.g., Ref.
@15#!, for this analysis it is expedient to make use of
empirical relationship that closely resembles observations
particular,

WM PI5
2pv

~ l 21!! S I

I M PI
D l

, ~4!

where I M PI5\v2/sM PI and sM PI is an empirically-
determined cross section. In reference to Eq.~3!, it should be
remarked that the number of photons absorbed by the m
ecule can exceed the minimum number required to reach
ionization limit. In this case the electron emerges with ad
tional kinetic energy, determined by the excess photon
ergy.

C. Transport equation

The transport equation for the distribution functionf of
electrons is given byd f /dt5S, where the form of the source
term S depends on the process by which electrons are b
Specifically,

f

’’
d f

dt
5nnH Wtun~E!d~u!, tunneling

WM PI~E!d„l\v2Ui2~g21!mc2
…, multiphoton.

~5!
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Here,c is the speed of lightin vacuo, g5(11u2)1/2 is the
relativistic factor,u5p/mc, and p is the momentum vari-
able. The relativistic formulation presented here perm
treatment of cases where the laser is sufficiently intens
induce quiver velocities approachingc.
o

s

se
ica

n

ub
ds
e

s
to

It is assumed that the laser pulse propagates along tz
direction. Effecting the change of variablesz,t→z,t5t
2z/c, the transport equation takes the formd f /dt5S/(1
2bz), where bz5c21dz/dt. The transport equation ca
then be integrated along the characteristics, leading to
f ~u,t!5nnE
2`

t dt8

12bz~t8!
H Wtun@E~t8!#d„u~t8!…, tunneling

WM PI@E~t8!#d„l\v2Ui2@g~t8!21#mc2
…, multiphoton.

~6!
r
the
am

la-

ulse

t is

o

f-
Here, orbitu(t8), g(t8) @and the electric fieldE(t8)] are all
parametrized in terms of the time variablet8, with the re-
quirement that the electron winds up at the phase space p
u, g at timet; i.e., u(t8)ut85t5u, g(t8)ut85t5g.

D. Laser field and equations of motion

The electric field and the vector potentialA are related by
E52c21]A/]t. The normalized vector potentiala
5ueuA/mc2 associated with the moving laser pulse is a
sumed to be given by the fundamental Gaussian@16#

a52
a0~t!

2i
exp~2 ivt1 iu!exp~2r 2/w2!ex1c.c., ~7!

where a0(t)5â0exp@2(t2t0)
2/tp

2# is the amplitude of the
normalized vector potential,u is a real-valued phase,w is the
laser spot size,t0 is the centroid of the pulse,tp is the pulse
duration andex is a unit vector along thex axis. In the fol-
lowing, it is assumed that the motion of electrons in the la
field can be described by the relativistically correct, class
equations; i.e.,

dp

dt
52ueuE2

ueu
gmc

p3B,

whereB is the magnetic field. In the paraxial approximatio
B'ez3E, whereez is a unit vector along thez axis.

The laser field given in Eq.~7! is peaked along thez axis.
Electrons that are born in the high-intensity region are s
ject to a relatively slow radial ponderomotive drift towar
the skirt of the laser beam. This slow drift can be analyz
by combining the equations of motion to obtain@17,18#

dgs
2

dt
5

]^a2&
]t

, ~8!
int

-

r
l

-

d

wheregs is the slowly varying part of the relativistic facto
and ^•••& denotes a temporal average. An estimate of
time taken by an electron to radially drift across a be
waist w may be obtained by inserting Eq.~7! into Eq. ~8!.
Neglecting diffraction and assuming the laser pulse is re
tively long, it follows that if

tp!
w

ca0
, ~9!

the radial displacement of an electron as the laser p
propagates through is negligible compared tow and one can
consider the laser field to be nearly planar. Henceforth i
assumed that

a52a0~t!sinvtex , ~10!

E5ueu21mcva0~t!cosvtex . ~11!

For plane waves, the equations of motion combine int

d

dt
~u2a2gez!50. ~12!

Equation~12! can be integrated to

u'~t8!2a'~t8!5u'~t!2a'~t!5const, ~13!

uz~t8!2g~t8!5uz~t!2g~t!5const, ~14!

whereaz5Ez50 in the paraxial approximation and the su
fix ' denotes the component that is transverse to thez axis.

Making use of the properties of thed function, Eq.~6!
simplifies to
f ~ux ,uz ,t!5nn

mc

ueu (
i

1

E~t i ! H Wtun@E~t i !#, tunneling,

WM PI@E~t i !#g~t i !

mc2ux~t i !
, multiphoton.

~15!
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In Eq. ~15! t i denotes an instant at which thed function in
Eq. ~6! triggers and the summation is over all indicesi such
thatt i<t. These instants are determined from Eqs.~13! and
~14!. In particular, for tunneling ionizationux(t i)50 and

ax~t i !5ax~t!2ux~t! ~16!

is an implicit equation fort i .
Making use of the definition ofg and Eq.~16!, it follows

that, for tunneling ionization,

uz~t!5g~t!21. ~17!

It must be stressed that this relationship is a consequenc
the ‘‘initial’’ condition that electrons are born at rest in th
tunneling regime. Observe that Eq.~17! implies that all elec-
trons have a forward-directed axial velocity. Making use
the definition ofg again, Eq.~17! can be rewritten as

ux

uz
56A 2

g21
. ~18!

This relationship@19,20# implies that the electron distribu
tion can be expressed as a function ofux only ~as well as of
t).

For MPI, on the other hand, the electrons are born o
circle in theux-uz plane. Specifically,

g~t i ![A11@ux~t i !#
21@uz~t i !#

2511~ l\v2Ui !/mc2.
~19!

The appropriate implicit equation fort i in this regime is

ux~t i !2ax~t i !5ux~t!2ax~t!. ~20!

III. EXAMPLES

In this section examples of the distribution function a
displayed to show the qualitatively different characterist
associated with tunneling ionization and multiphoton ioniz
tion. The plots are obtained numerically by performing t
summation indicated in the analytical form for the distrib
tion function. The radiation is linearly polarized, withl
51.06mm, corresponding to the wavelength of Nd31:glass
laser. With reasonable choices for the spot sizew and the
pulse lengthtp the constraint in Eq.~9! is readily satisfied.
Moreover, the Rayleigh rangeZR can be made long enoug
that diffraction of the laser beam is negligible.

A. Tunneling ionization

An approximation to the form of the distribution functio
in the tunneling regime may be obtained as follows. Negle
ing diffraction, Eq.~16! can be rewritten as

sinvt i5
a0~t!sinvt1ux

a0~t!
. ~21!

This equation is to be solved fort i that are to be inserted in
Eq. ~15!. SinceWtun is a very sharply peaked function of th
05640
of

f

a

s
-
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electric field, the dominant contribution to the sum in E
~15! is from thoset i such that sinvti'0; i.e., the distribution
function is peaked at

utun,peak~t!52a0~t!sinvt. ~22!

Expanding cosvti aboutvt i5mp, wherem is an integer, it
follows that

f tun~ux ,t!;expH 2g Fux2utun,peak

a0~t! G2J , ~23!

where g5@ ueu/3mcva0(t)#(Ui /UH)3/2(4pI H /c)1/2. The
tunneling ionization distribution function thus has the for
of a Gaussian in the momentum variableux . The centroid of
the Gaussian, given by Eq.~22!, oscillates in time with fre-
quencyv, with an excursion amplitude equal toa0(t). Su-
perimposed on this, the Gaussian has a width that is pro
tional to three-quarters power of laser intensity@}a0

3/2(t)#.
For the example in the tunneling ionization regime the g

consists of hydrogen atoms with ionization energy 13.6
The peak laser intensity~averaged over the period! is I 0
51 PW/cm2 with Keldysh parametergK50.254 and nor-
malized laser vector potentialâ050.029. Before discussing
the distribution function, it is interesting to examine th
momentum-space relationship embodied by Eq.~18!. This is
done by performing a two-dimensional particle-in-cell sim
lation of a laser pulse propagating into an initially neutral g
of hydrogen. The intensity plots in Fig. 2 show the resu
where each point represents an electron, placed accordin
its momentum variables at a particular instant in time.
start with the simplest case, the plot in Fig. 2~a! is for a plane
wave, relatively early in time while all electrons are still
the laser pulse. Coordinates of points lying on the curve
this plot are found to be in good agreement with Eq.~18!.
Figure 2~b! shows the momentum-space plot a little later o
when electrons have slipped behind the laser pulse. As
pected, the realistic case of a laser pulse with a finite~trans-
verse! spot size is more complicated. Figure 2~c! shows the
example of a laser beam with a spot size radius equal to
optical wavelengths. As ionization proceeds and plas
forms, the electron density approaches 0.1% of the crit
density in the simulations shown in Figs. 2~b! and 2~c!. The
space charge field due to the plasma has the effect of sm
ing the energy-angle relationship of Eq.~18!. For simulations
in which the electron density does not build up significant
the energy-angle relationship in Eq.~18! is found to hold
extremely well.

Figure 3 is a surface plot of the electron distribution fun
tion in the tunneling regime, obtained from Eq.~15!. The
distribution function f (ux ,t) is plotted along the vertica
axis. One of the horizontal axes isux , while the other cor-
responds toT[vt/p. The distribution function is plotted
over roughly one period of oscillation, near the peak la
intensity. Oscillations of the centroid of the distribution fun
tion, as well as its Gaussian-like falloff withux are consistent
with the prediction of Eq.~23!. The ponderomotive energ
Up of the quivering electrons in this example is 104 eV.
the distribution functionF(E) is plotted as a function of
7-4
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ELECTRON DISTRIBUTION FUNCTION IN SHORT- . . . PHYSICAL REVIEW E 67, 056407 ~2003!
electron kinetic energy,E[(g21)mc2, the plot in Fig. 4 is
obtained. In Fig. 4,F is plotted at three different instants i
time, labeled byT550, 100, and 200. As time advances, t
distribution function increases over the entire energy ra
as more and more electrons are released. Observe tha

FIG. 2. Momentum-space plots in tunneling ionization. The
tensity plot in~a! is for a plane wave, early on while electrons are
the pulse, whereas in~b! the electrons have slipped behind th
pulse. The intensity plot in~c! is for laser beam with a spot siz
radius equal to 10 optical wavelengths.

FIG. 3. Surface plot of electron distribution functionf (ux ,t) ~in
arbitrary units! in the tunneling regime.
05640
e
as

indicated in Ref.@8#—for a linearly polarized laser beam th
energy distribution functionF peaks at small energies.

B. Multiphoton ionization

Noting that for multiphoton ionizationg(t i) and ux(t i)
are constants for alli, the distribution function simplifies to

f M PI~ux ,uz ,t!5nn

2pv/I M PI
l

~ l 21!!

g~t i !

ueucA~uz2ul !~ur2uz!

3(
i

uE0cosvt i u2l 21, ~24!

whereg(t i) is the constant defined by Eq.~19!. In writing
Eq. ~24!, ux(t i) in the denominator of Eq.~15! has been
factorized as6@(uz2ul)(ur2uz)#1/2, where

ul ,r5
g~t i !ux

27A@g2~t i !21#~ux
212!

2
, ~25!

and the2 and1 in Eq. ~25! correspond to the sufficesl and
r, respectively.

Examination of Eq.~24! reveals thatf has singularities
along curvesuz5ul anduz5ur in momentum space. How
ever, these are square-root singularities that are integr
and physically meaningful quantities such as the elect
density @}**duxduzf (ux ,uz ,t)# are well behaved. Thes
singularities originate from theux variable in the denomina
tor of Eq. ~15!. Physically, therefore, the singularities a
simply a reflection of the time interval that an electro
spends in a given region of phase space as it executes q
motion along thex axis.

Equation~24! may be used to obtain an approximate for
for the distribution function. Neglecting diffraction, Eq.~20!
can be rewritten as

sinvt i5
a0~t!sinvt1ux7@~uz2ul !~ur2uz!#

1/2

a0~t!
.

~26!

-

FIG. 4. Electron distribution function~in arbitrary units! in the
tunneling regime plotted as a function of electron kinetic energyE.
The three curves correspond to time instantsT[vt/p550, 100,
and 200.
7-5
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HAFIZI et al. PHYSICAL REVIEW E 67, 056407 ~2003!
In Eq. ~26! the upper~lower! sign is to be used according a
ux is positive ~negative!. The dominant contribution to the
sum in Eq.~24! for large l is from t i that satisfy sinvti'0;
i.e., the distribution function is peaked at

uM PI,peak~ux ,uz ,t!52a0~t!sinvt

6@~uz2ul !~ur2uz!#
1/2. ~27!

Expanding cosvti aboutvt i5mp, wherem is an integer, it
follows that

f M PI~ux ,uz ,t!;
12 l @ux2uM PI,peak~ux ,uz ,t!#2/a0

2~t!

@~uz2ul !~ur2uz!#
1/2

.

~28!

Observe that sinceuM PI,peak is a function ofux , the distri-
bution in Eq.~28! does not have a simple parabolic variati
with ux . However, the centroid of the distribution, given b
Eq. ~27!, oscillates in time with frequencyv and with an
excursion amplitude equal toa0(t).

For the example in the multiphoton ionization regim
laser propagation in a medium with ionization energy eq
to 11.7 eV is considered and the MPI cross section is take
be sM PI56.4310218 cm2 @21,22#. @These parameters ar
nearly those of the molecule O2 ~ionization energy being
12.1 eV!; the surface plot for the distribution function is fa
better resolved for the lower ionization energy chosen.# The
peak laser intensity~averaged over the period! is I 0
550 TW/cm2, with Keldysh parametergK51.05, and nor-
malized laser vector potentialâ050.0064. The electron dis
tribution function att2t052.75tp , obtained from Eq.~24!,
is shown in Fig. 5. This plot corresponds to the minimu
number of photons required for ionization of the molecu
with 1.06mm radiation; i.e.,l 5 l 0510. Following Eq.~28!,
it is noted that the distribution oscillates in time at optic
frequencyv. For the plot in Fig. 5, an instant in time i
picked such that the circular base of the distribution is c
tered onux5uz50. ~For improved presentation and clarit
the plot range forux is larger than that ofuz ; hence the
elliptical appearance of the base.! The ponderomotive energ
Up of the quivering electrons in this example is 5.2 eV. F
lowing Eq. ~24!, it is remarked that there are two integrab
singularities due to the zeros of the square root in the
nominator. The rise inf with increasinguuzu is due to this.
Although not shown here, for larger values ofl, the circular
base of the plot in Fig. 5 expands, in quantitative agreem
with the prediction of Eq.~19!. While electrons are all born
on the circle given by Eq.~19! ~assuming an infinitely long
laser pulse!, the quiver motion along thex axis leads to the
d

05640
,
l
to

l

-

-

e-

nt

observed width off in the ux direction. When plotted as a
function of kinetic energy, plots similar to that in Fig. 5 lea
to a series of relatively narrow peaks of decreasing value
l increases. The plot in Fig. 5 is consistent with the distrib
tion in Eq. ~28! in the region surrounding the peak
uM PI,peak.

IV. CONCLUSIONS

The electron distribution function is obtained in two lim
iting regimes of photoionization when a laser beam intera
with a gas. The two limits correspond to the tunneling a
the multiphoton regimes. The transport equation for the d
tribution function is integrated along the characteristics
fined by the classical equations of motion in the laser fie
Analytical expressions for the distribution function ha
been obtained. Illustrative plots of the distribution functio
are presented and discussed. Two-dimensional particle
cell simulation results are also presented to demonstrat
interesting momentum-space pattern that is characteristi
tunneling ionization.
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FIG. 5. Electron distribution function in multiphoton regime
The distribution~in arbitrary units! is plotted for 10 photon ioniza-
tion, wherel 0[10 is the minimum number of photons required f
ionization of the molecule with 1.06mm radiation. The plot shows
the distribution at an instant in time such that the circular base
the distribution function is centered onux5uz50. For improved
presentation and clarity, the plot range forux is larger than that of
uz , hence the elliptical appearance of the base.
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